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Relação entre a radiação solar e variáveis   meteorológicas
em modelo preditivo de produtividade agrícola

Abdelkarem M. Adam2*  & Yuan Zheng3

ABSTRACT: Knowledge of the complicated correlation between meteorological variables and crop yield is crucial 
for food security and agricultural sustainability. This study aimed to investigate how incident solar radiation has 
affected crop production in the Gadarif region of Sudan over the last 41 years. Using a predictive framework, trends in 
annual incident solar radiation and temporal variations during sorghum and sesame growing seasons were examined 
and machine learning (ML) with Extreme Gradient Boosting (XGBoost), Boosted Regression Forest (BRF), and 
K-Nearest Neighbors (K-NN) was used to predict crop yield. Significant relationships between incident solar radiation 
indicators and crop yields were identified via detrending approaches and correlation analyses. Results indicate a 
significant inverse correlation between solar radiation and sorghum yield, and a positive correlation between sesame 
yield and solar radiation. For both sorghum and sesame yield, K-NN was the most accurate model, demonstrating 
the significance of incident solar radiation and temperature in predicting crop yield. These findings highlight the 
potential of ML to improve agricultural forecasting models and inform adaptive agricultural practices in the region. In 
general, this study provides valuable insights into the dynamic relationship between incident solar radiation and crop 
yield, emphasizing the importance of considering meteorological factors in agricultural planning and management.
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RESUMO: O conhecimento da complicada correlação entre as variáveis   meteorológicas e o rendimento das culturas 
é crucial para a segurança alimentar e a sustentabilidade agrícola. Este estudo está centrado na investigação de como 
a radiação solar incidente afetou a produção agrícola na região de Gadarif, no Sudão, nos últimos quarenta anos. 
Usando uma estrutura preditiva, a pesquisa avalia tendências recentes na radiação solar incidente anual, examina 
variações temporais durante as estações de cultivo de sorgo e gergelim e utiliza técnicas de aprendizado de máquina 
para prever o rendimento das culturas. Além disso, ML, incluindo Extreme Gradient Boosting (XGBoost), Boosted 
Regression Forest (BRF) e K-Nearest Neighbours (K-NN), foram empregados para previsão de rendimento. Através 
de abordagens de redução de tendências e análises de correlação, foram identificadas relações significativas entre os 
indicadores de radiação solar incidente e o rendimento das culturas. Os resultados indicam uma correlação inversa 
substancial entre a radiação solar e a produção de sorgo, enquanto a produção de gergelim demonstra uma correlação 
positiva com a radiação solar. Tanto para o rendimento do sorgo como do gergelim, o K-NN surge como o modelo 
mais preciso, mostrando a importância da radiação solar incidente e da temperatura na previsão do rendimento das 
culturas. Estas descobertas destacam o potencial da aprendizagem de máquina para melhorar os modelos de previsão 
agrícola e informar as práticas agrícolas adaptativas na região. Em geral, este estudo fornece informações valiosas 
sobre a relação dinâmica entre a radiação solar incidente e o rendimento das culturas, enfatizando a importância 
de considerar fatores meteorológicos no planeamento e gestão agrícola.

Palavras-chave: radiação solar, rendimento agrícola, região de Gadarif, Sudão, aprendizado de máquina

HIGHLIGHTS:
From 2011 to 2021, the correlation between solar radiation and yield was inverse for sorghum and positive for sesame.
A significant upward trend in solar radiation was observed from 2011 to 2021, especially in August and September.
The Mann-Kendall test revealed a significant rise in solar radiation from 2011-2021, with positive Z values and p < 0.05.
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Introduction

Agriculture is the cornerstone of Sudan’s economy, with 
crops such as sesame (Sesamum indicum) and sorghum 
(Sorghum bicolor) playing a critical role in both food security 
and traditional agricultural practices (Elramlawi et al., 2019). 
In the Gadarif region, these crops occupy a substantial portion 
of the agricultural landscape, making it vital to understand the 
factors that influence yield. Crop productivity is particularly 
sensitive to climate variables, incident solar radiation being a 
key factor in growth and yield (Mannava, 2023).

Solar radiation is a critical component of the energy balance 
that drives evapotranspiration processes, affecting water and 
nutrient transport in plants and, consequently, crop yield 
(Baur et al., 2024). Different forms of solar radiation, including 
top-of-atmosphere, incident, reflected, and absorbed solar 
radiation, play different roles in plant energy balance and 
growth (Lu et al., 2024). However, the present study focuses on 
incident solar radiation, which is the direct measure of solar 
energy reaching the Earth’s surface.

Despite extensive research on the effect of climate variables 
on crop growth to determine crop evapotranspiration and crop 
coefficients (Kc), there is still a need for region-specific studies 
that investigate the influence of incident solar radiation and 
other meteorological factors on crop yields during different 
growth stages in Sudan. Previous research has demonstrated 
correlations between weather variables and crop yield (Musa 
et al., 2021). 

This study aimed to analyze the relationship between 
incident solar radiation and crop yields in the Gadarif region 
of Sudan, using Pearson’s and Spearman’s correlation analyses, 
and predict crop yields based on climate variables such as 
incident solar radiation, temperature, and rainfall, using 
advanced machine learning (ML) models. The XGBoost, 
Boosted Regression Forest (BRF), and K-Nearest Neighbors 
(K-NN) algorithms were chosen for their ability to capture 
complex interactions between climate variables and crop yield.

Material and Methods

The study was conducted in the Gadarif region of Sudan, 
the largest area for mechanized rain-fed sorghum and 
sesame cultivation in the country. Gadarif covers an area of 
approximately 78,000 km² and is situated within a semi-arid 
climate zone, 33 to 37° E and 12 to 16° N. With average annual 
rainfall of 450 mm, primarily from June to September, and 
temperatures ranging from 21 °C in January to 37 °C in April and 
May, the region plays a crucial role in Sudan’s agricultural output, 
making it the focal point of this study (Sulieman & Ahmed, 
2013). Figure 1 shows the study area within the Gadarif region. 

Meteorological data, including daily incident solar 
radiation, temperature, relative air humidity, wind speed, and 
rainfall were collected from the Gadarif weather station. These 
data were aggregated into monthly averages and analyzed 
during the July to October growing season, across four 
decades: 1981–1990, 1991–2000, 2001–2010, and 2011–2021. 
Concurrently, data on sorghum and sesame yields from 
1981 to 2021 were obtained for analysis from the Ministry of 
Agriculture and Irrigation in Gadarif state, providing essential 
yield measurements (in kg) and harvested areas (in ha).

To provide a comprehensive overview of climate conditions 
throughout the study period, meteorological data were 
collected daily from 1981 to 2021, and then aggregated into 
monthly averages for analysis of long-term trends. Table 1 
presents a summary by decade of the monthly values for the 
variables incident solar radiation (measured in MJ m-2 per day), 
temperature, relative air humidity, wind speed, and rainfall, 
all essential for understanding the environmental conditions 
in Gadarif during the sorghum and sesame growing seasons.

These relationships were analyzed by focusing on anomalies, 
using Pearson’s correlation and nonparametric Spearman’s rank 
correlation. Prior to analysis, the Shapiro–Wilk normality 
test was conducted on the yield anomalies to ensure normal 
distribution, confirming that the detrending process was valid. 
All datasets met the normality assumption (p ≤ 0.05).

Figure 1. Study area in the Gadarif region of Sudan
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In addition to correlation analyses, the ML models Extreme 
Gradient Boosting (XGBoost), Boosted Regression Forest 
(BRF), and K-Nearest Neighbors (K-NN) were used to predict 
crop yields based on the meteorological data. The models were 
trained and tested using an 80/20 data split. To further clarify 
the mathematical foundation of the ML models, the following 
equations illustrate core algorithm use.

XGBoost is a scalable and efficient implementation of 
gradient boosting machines, developed by Chen & Guestrin 
(2016), that constructs models by sequentially adding weak 
learners to minimize the loss function. The general form of 
the objective function is expressed as follows: the XGBoost 
model makes predictions f(x) by additive training, sequentially 
combining the outputs of individual learners’ ft(x) (Eq. 1):

successive model learning from the prediction errors of its 
predecessor to incrementally improve accuracy. BRF training 
begins with a basic regression tree and additional trees are 
subsequently incorporated to fit the errors from the initial 
model and minimize the loss function. This process continues, 
with each tree focusing on minimizing the residuals, until 
convergence or the predefined number of trees is reached. The 
final BRF model is an additive combination of the sequentially 
trained regression trees (Eq. 4). 

Table 1. Average values by decade for key climate variables during sorghum and sesame growing seasons (1981-2021)

MaxT (°C) - Maximum temperature; MinT (°C) - Minimum temperature; RH (%) - Relative air humidity
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where: 
xi - is the training data; and, 
ft(x) - represents the incremental learner fit at stage t. 

Typically, simple regression trees are used as the base 
learners. Additive training minimizes the following regularized 
objective functions (Eq. 2):
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This equation serves two purposes, namely minimizing the 
empirical training error measured by the loss function l (yi, yi) 
between the predicted, yi and target, yi values, and controlling 
model complexity through the regularization term Ω (f). The 
complexity of regularization is defined as (Eq. 3):

( ) 21f T
2

Ω = γ + λ ω

where: 
T - is the number of leaves; 
ω - are the leaf weights; and, 
λ and γ - control the degree of regularization. 

This limits the complexity of the individual tree models to 
prevent overfitting.

On the other hand, BRF combines regression trees with 
boosting techniques, as described by Elith et al. (2008), making 
it particularly effective in modeling non-linear relationships 
between environmental factors and crop yields. The BRF 
algorithm builds sequential regression tree models, with each 
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where: 
f(x) - denotes the comprehensive prediction; 
m - is the number of trees;
wm - is the weight assigned to the m-th tree; and, 
fm(x) - is the prediction made by the m-th tree.

Finally, the KNN method, first introduced by Evelyn Fix 
and Joseph Hodges (Fix & Hodges, 1989) and later expanded on 
by Kramer (2013), is a nonparametric classification technique 
used for combined data classification and regression tasks. 
The approach uses a dataset in either scenario and considers 
the ‘k’ closest training samples as the input. The KNN method 
involves querying a database to identify data points that closely 
resemble the observed data, which are typically the nearest 
neighbors of the current data. In this study, KNN was applied 
to predict the most closely related testing stations based on 
the training station. Eq. 5 summarizes the KNN regression 
function, as follows:

( )
( )K

KNN i
i N x '

1f x ' y
K ∈

= ∑

In KNN regression, when confronted with an unknown 
pattern 𝑥-′, the algorithm computes the mean of the function 
values obtained from its K-closest neighbors. The set NK(x) 
includes the indices of the nearest K neighbors of 𝑥-′. The idea 
of localized functions in both the data and label spaces is the 
core principle of the averaging process in KNN. Essentially, 
within the close vicinity of xi, patterns -′ are expected to 
exhibit similar continuous labels, with f (xi) approximating 
yi (Kramer, 2013).

The four most common statistical indicators used to assess 
model performance are: (1) coefficient of determination (R2), 
which measures the proportion of variance in the dependent 
variable explained by the independent variable(s), with higher 
values indicating a better fit; (2) mean absolute error (MAE), 

(1)

(4)

(2)

(3)

(5)
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the average of absolute differences between predicted and 
actual values, with low values denoting better performance; (3) 
root mean square error (RMSE), the square root of the average 
of squared differences between predicted and actual values, 
whereby low values indicate better accuracy; and (4) mean 
absolute percentage error (MAPE), the average of absolute 
differences between predicted and actual values, expressed as 
a percentage of actual values, where low values demonstrate 
better performance. These indicators are measured by 
equations that incorporate actual and predicted values, and 
the number of observations (Eqs. 6, 7, 8, and 9).

K-fold cross-validation was applied to ensure reliable 
training results, testing k values of 3, 5, and 10 to determine 
the optimal value for accurate predictions, with minimal 
differences in outcome. A value of k = 5 was chosen for its 
reduced bias compared to k = 3 and lower computational 
requirements in relation to k = 10 (Rodriguez et al., 2009). 

Figure 2 presents the methodological framework used to 
analyze the impact of climate variables on sorghum and sesame 
yields, from data collection to analysis and interpretation, 
applying both traditional statistical methods and machine 
learning techniques. 
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 For every time step, Xi and Yi denote the actual and 
forecasted crop yield values, respectively, and Xi and Yi their 
respective means.

The dataset was partitioned into training and testing sets, 
allocated at 80 and 20%, respectively, to balance model learning 
and evaluation. This ratio was deemed optimal via iterative 
experimentation, starting with equal proportions and adjusting 
for increased training and decreased testing. Fine-tuning of 
hyper parameters, including learning rate and regularization 
strength, was conducted using randomized search cross-
validation (CV) to efficiently explore parameter space and 
identify optimal settings for model training. This technique 
systematically explores a wide range of combinations, thus 
enhancing model performance. By rigorously optimizing hyper 
parameters, the present study highlights the importance of 
methodological rigor in improving the predictive performance 
of ML models, providing valuable insights for future research 
(Kumbure et al., 2022). 

Xmin - Minimum actual value in the dataset; Xmax - Maximum actual value in the dataset; Xmean - Mean actual value in the dataset; SD - Standard deviation; CV - Coefficient of 
variation; H – Incident solar radiation; WS - Wind speed; RH – Relative air humidity 

Table 2. Statistical characteristics for meteorological parameters at the Gadarif weather station for the entire study period 
(1981-2021)

This flowchart outlines the process from data collection and analysis to interpretation, 
combining both statistical methods and machine learning techniques

Figure 2. Methodological framework for assessing the impact 
of climate variables on sorghum and sesame yields in Gadarif, 
Sudan (1981-2021)

Results and Discussion 

Coefficients of variation (CV) for yield, rainfall, relative 
air humidity (RH), wind speed (WS), minimum (Tmin) and 
maximum temperature (Tmax), and incident solar radiation 
(H) were analyzed (Table 2).

The Mann-Kendall test was used to identify patterns in 
incident solar radiation over time, detecting monotonic upward 
or downward trends. The results are shown in Table 3, including 

(6)

(7)

(8)

(9)
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the test statistic (Z) and associated p-value. Positive Z values 
indicate an upward trend, negative values a downward trend, 
and p ≤ 0.05 a statistically significant trend.

Notably, a significant increasing trend was identified for 
August in the 2011–2021 period. For both 2001-2010 and 
2011-2021, there was an obvious increasing trend in September, 
with no significant trends for October. Considering the entire 
growing season, a significant increasing trend was observed for 
2011–2021. In summary, the most recent 2011–2021 timeframe 
showed noteworthy upward trends in incident solar radiation 
for August, September, and the season as a whole. Conversely, 
earlier periods displayed fewer significant trends, suggesting 
a trend of increasing solar radiation during the late summer 
and fall months over the past decade.

Figure 3 illustrates the trends in sorghum and sesame 
yields over four decades, from 1981 to 2021. For 1981–1990 
and 1991–2000, sorghum yield decreased by 1.14%, or 68.05 
kg ha-1, continuing to decline by 1.23% between 1991–2000 
and 2001–2010, corresponding to a reduction of 90.07 kg 
ha-1. However, in the last decade (2011–2021), sorghum yield 
increased by 1.53%, equivalent to 212 kg ha-1, which was 
attributed to the rise in incident solar radiation. Between 
1981–1990 and 1991–2000, sesame yields fell by 1.17% or 
90.82 kg ha-1, followed by a 0.99% reduction (3.97 kg ha-1) 
in 1991–2000 and 2001–2010, and an increase of 0.80% or 
135.96 kg ha-1 in the most recent decade (2011–2021). While 
this last period coincided with an increase in incident solar 
radiation, it is important to underscore that multiple factors 

Table 3. Analysis of monthly incident solar radiation patterns at Gadarif weather station, Sudan, using the Z statistic from the 
Mann-Kendall test for sorghum and sesame growing seasons (1981–2021)

Figure 3. Patterns of incident solar radiation and crop yield across four decades (1981-2021), based on data from the Gadarif 
weather station
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likely contributed to these higher yields, including genetic 
improvements in cultivars, advancements in agricultural 
practices, better nutrition, irrigation techniques, and other 
agronomic interventions. Without comprehensive evidence 
directly linking the yield increase to incident solar radiation, 
it is important to acknowledge the potential influence of these 
additional variables.

Further analysis demonstrated that while RMSE values only 
increased slightly between K-NN training and testing (from 
15.4 to 16.2 kg ha⁻¹ for sorghum), the scatter plots (Figures 4 
and 5) suggest more pronounced deviations from the 1 × 1 line 
during testing. This discrepancy can be attributed to the non-
parametric nature of the K-NN model, which is particularly 
sensitive to local variations in data distribution. Moreover, 
residual analysis and further inspection revealed larger 
prediction errors for specific outliers or regions of the input 
space during testing, which are visibly more pronounced in the 
scatter plots than the RMSE metric alone suggests. Additional 
error metrics such as MAE and residual distribution plots 
were used to provide a better understanding, highlighting the 
complex nature of model performance across different datasets.

The performance of the three ML algorithms (XGBoost, 
BRF, and K-NN) in predicting sorghum yield was assessed 
(Table 4). K-NN was the most accurate, with an average R2 
of 0.89 across different test datasets. BRF and XGBoost also 
exhibited satisfactory performance, with R2 values of 0.85 and 
0.82, respectively.

Analysis of K-NN indicated that incident solar radiation 
and average temperature during the growing season were the 
most influential factors in predicting sorghum yield. This is 
consistent with a previous study that emphasizes the influence 
of weather-related variables on sorghum yield (Affoh et al., 
2022).

In parallel, the same three ML techniques (XGBoost, BRF, 
and K-NN) were used to predict sesame yield. Notably, the 
K-NN model demonstrated superior accuracy, obtaining a R2 of 
0.90 across the validation datasets, while BRF and XGBoost also 
performed well, yielding respective R2 values of 0.88 and 0.83.

Temperature and incident solar radiation were important 
predictors of sesame yield, corroborating an earlier study 
(Zhou et al., 2023). The findings obtained here are consistent 
with previous investigations, demonstrating the effectiveness 
of ML methods in predicting crop yields (Gonzalez-Sanchez 
et al., 2014; Pandith et al., 2020). However, the present study 
provides new insights by identifying particular variables that 
significantly influence sorghum and sesame yields within the 
Gadarif region of Sudan.

For both crops, K-NN consistently outperformed XGBoost 
and BRF in terms of R² in the training and testing datasets, 
and generally obtained the lowest MAE, MAPE, and RMSE 
across these datasets, indicating better accuracy and smaller 
prediction errors compared to XGBoost and BRF. XGBoost 
tended to exhibit the highest prediction errors (MAE, MAPE, 
and RMSE) among the models, particularly in the testing 

XGBoost - Extreme Gradient Boosting model; BRF - Boosted Regression Forest model; K-NN - K-Nearest Neighbors model

Figure 4. Crop yields predicted by different ML models (XGBoost, BRF, K-NN) compared to actual values for sesame (A, B, 
and C) and sorghum (D, E, and F) during the training phase, from 1981 to 2013
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datasets for both crops. These results suggest that, for the given 
datasets and features, K-NN is better suited to predicting crop 
yields than XGBoost and BRF (Table 4).

Based on global climate models, Ciavarella et al. (2021), 
provides evidence that in the 140-year record, 8 out of the 10 
warmest years globally occurred after 2010. Similarly, the four 
warmest years in Africa have all been recorded since 2015. The 
authors also highlight that the annual temperature increase 
between 1981 and 1921 is more than twice that observed from 
1910 to 1921, rising at rates of 0.31 and 0.12 °C per decade, 
respectively. These findings demonstrate a rising trend in 
annual incident solar radiation for the past four decades in 
a specific region of Sudan (Figure 6). This corroborates the 
findings of Mohammad & Othman (2022), who reported the 
potential benefits of predictive models for solar radiation by 
providing valuable insights to optimize crop yield. A study 
conducted in the southern portion of the Upper Blue Nile Basin 
in northwestern Ethiopia supports these findings, highlighting 

XGBoost - Extreme Gradient Boosting model; BRF - Boosted Regression Forest model; K-NN - K-Nearest Neighbors model

Figure 5. Crop yields predicted by different machine learning models compared to actual values for sesame (A, B, and C) and 
sorghum (D, E, and F) during the testing phase, from 2014 to 2021

Table 4. Performance of machine learning models against actual sorghum and sesame yield data during training and testing 
periods for the Gadarif region

R2 - Coefficient of determination; MAE - Mean absolute error; MAPE - Mean absolute percentage error; RMSE - Root mean square error

Figure 6. Time series data on incident solar radiation from 
1981 to 2021 in Gadarif, Sudan

increasing trends in annual Tmin and Tmax from 1981 to 2010, 
with per decade rises of 0.1 to 0.15 ºC. These temperature 
changes directly influence incident solar radiation, as observed 
by Mengistu et al. (2014). The magnitude and duration of solar 
radiation are key factors in crop development. These findings 
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are reinforced by Villa et al. (2022), who underscored the 
dependence of plant growth and development on the intensity 
and duration of incident solar radiation.

As shown in Table 5, for 2001–2010, a statistically significant 
(p ≤ 0.05) correlation was observed between incident solar 
radiation and sorghum yield throughout the growing season, 
with r values of -0.36, -0.38, and -0.43 for July, August, and 
September, respectively (p = -0.31, -0.34, and -0.53 for the same 
months). This correlation persisted from 2011 to 2021, with 
r = -0.55, -0.35, and -0.36 for July, September, and October, 
and p-values of -0.31 and -0.41 for August and October, 
respectively. Additionally, for sesame, there was a significant 
inverse relationship between incident solar radiation and crop 
yield from 1991 to 2000. This is consistent with the findings of 
Holzman et al. (2018) and was particularly evident in July (r 
= -0.68) and across the growing season (r = -0.33), with both 
correlations statistically significant (p ≤ 0.05). The correlation 
continued from 2001 to 2010, with a coefficient of -0.37 in July 
and respective p-values of -0.45 and -0.41 for July and August. 

The analyses conducted here revealed a number of 
interesting insights into the interaction between incident solar 
radiation, other meteorological variables, and crop yield and 
the implications for agricultural practices. 

The results confirm the role of solar radiation in determining 
crop yield. There is a positive relationship between incident 
solar radiation and crop yield, indicating that greater exposure 
to sunlight improves photosynthesis and plant growth. This is 
well-established in the literature, highlighting the pivotal role 
of incident solar radiation in increasing crop yield (Holzman 
et al., 2018; Yang et al., 2019). Farmers in areas with abundant 
solar radiation can benefit from this knowledge to improve crop 
planting times and further increase yield potential.

Conclusions

1. Analysis of incident solar radiation trends in Gadarif 
state, Sudan, over the past four decades reveals significant 
patterns correlated with crop yields. Notably, there was a 
marked increase in incident solar radiation during the late 
summer and fall months from 2011 to 2021, specifically August 
and September. 

2. The machine learning models Extreme Gradient Boosting 
(XGBoost), Boosted Regression Forest (BRF), and K-Nearest 
Neighbors (K-NN) were used to predict crop yield. The results 
demonstrated that the models effectively captured the complex 

interactions between incident solar radiation and crop yields. 
K-NN was the most accurate, underscoring the significant impact 
of incident solar radiation and temperature on yield predictions.

3. Overall, this study highlights the importance of advanced 
machine learning techniques in improving agricultural 
forecasting models. These insights are crucial for informing 
adaptive agricultural practices, improving food security, and 
ensuring agricultural sustainability in regions with variable 
meteorological conditions.
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