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Estimativa da eficiência energética do processo aeração
de grãos armazenados através de machine learning

Weder N. Ferreira Junior2 , Osvaldo Resende2 , Daniela C. de Oliveira2 ,
Daniel E. C. de Oliveira2*  & Elivânio dos S. Rosa2

ABSTRACT: Aeration is carried out by blowing external air into the silo, with the aim to keep the temperature in 
the mass of stored grains at safe levels. In the present study, the energy efficiency of aeration of stored sunflower 
grains was estimated, and a model was proposed and tested to estimate the energy efficiency of aeration, using 
different algorithms in supervised and unsupervised machine learning. The objective of the work was to develop 
a Web application based on data mining and modeling with machine learning. The database was composed of 
information on the average temperature at the height of the sensors, average temperature of the silo, external 
ambient temperature, occurrence of aeration, if there was cooling, heating and direct heating during aeration, and 
the energy efficiency of the aeration process. The model for estimating the energy efficiency of the aeration process 
proved to be efficient, identifying that the energy efficiency was 97.78% during the aeration of stored sunflower 
grains. Among the classifier algorithms tested, Support Vector Machine (SVM-Poly) showed the best metrics and 
indicators, hence being recommended for implementation in system development networks capable of predicting 
the aeration status of stored grains.
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RESUMO: A aeração é realizada por meio da insuflação do ar externo para dentro do silo, tendo como objetivo 
manter a temperatura da massa de grãos armazenados em níveis seguros. No presente estudo foi estimada a eficiência 
energética da aeração de grãos de girassol armazenados, assim como proposto e testado um modelo de estimativa da 
eficiência energética da aeração, utilizando diferentes algoritmos no aprendizado de máquinas supervisionado e não 
supervisionado. O objetivo no trabalho foi desenvolver uma aplicação Web a partir da mineração e modelagem dos 
dados com o aprendizado de máquinas. O banco de dados foi composto pelas informações da temperatura média 
do nível dos sensores, temperatura média do silo, temperatura ambiente externa, ocorrência de aeração, se houve 
resfriamento, aquecimento e aquecimento direto durante aeração, e a eficiência energética do processo de aeração. 
O modelo de estimativa da eficiência energética do processo de aeração demonstrou-se eficiente, identificando que 
durante a aeração de grãos de girassol armazenados a eficiência energética foi de 97,78%. Dentre os algoritmos 
classificadores testados na Máquina de Vetores de Suporte (SVM-Poly) apresentou as melhores métricas e indicadores, 
sendo recomendado para implementação em redes de desenvolvimento de sistemas capaz de predizer o status da 
aeração de grãos armazenados.

Palavras-chave: Weka, máquina de vetores de suporte, K-means

HIGHLIGHTS:
The model for estimating the energy efficiency of the aeration process proved to be efficient.
The proposed model for evaluating aeration efficiency has applicability of use in predictive analysis of the process.
From data mining and modeling with machine learning, it was possible to develop a Web tool.
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Introduction

Aeration aims to keep the temperature in the mass of 
stored grains at safe levels, as well as the intergranular relative 
humidity, besides contributing to the uniformity of grain 
mass temperature (Lopes & Steidle Neto, 2019). Aeration 
management is carried out by blowing external air into the 
silo; therefore, before and during the process, attention should 
be paid to grain mass temperature, through thermometry 
data, and external air temperature (Durks et al., 2019; Lopes 
& Steidle Neto, 2019). 

To carry out aeration, the best external air conditions must 
be taken advantage of to make the process economical and 
preserve the quality of the product (Panigrahi et al., 2020). 
Inefficiency in the aeration process compromises grain quality, 
as the increase in temperature can contribute to increasing 
the respiratory rate of the product, thus directly affecting its 
quantity and quality (Mohapatra et al., 2017). In addition, an 
inefficient process results in unnecessary energy expenditure, 
increasing the costs of the storage.

Therefore, the energy efficiency of these processes need to 
be monitored to improve planning management, since there 
is no predictive model for the energy efficiency of aeration. 
Therefore, it is important to propose a model capable of 
estimating the efficiency of the process. Machine learning 
techniques can be employed in this management process, as 
they use the interference principle called induction, which 
allows drawing generic conclusions through a set of raw data, 
and this learning can be supervised or unsupervised (Setiawan 
et al., 2009; Lorena & Carvalho, 2013).

Thus, the objective in the present study was to estimate 
the energy efficiency of aeration of stored sunflower grains, as 
well as proposing and testing a model to estimate the energy 
efficiency of aeration, using different algorithms in supervised 
and unsupervised machine learning. Building upon these goals, 
the study also aimed to develop a Web application based on 
machine learning.

Material and Methods

All the information (temperature at the height of the sensors, 
average temperature of the silo, external ambient temperature) 
was classified into two databases, primary and secondary; the 
first was composed of raw data, while the second was obtained 
from the first through data processing with noise removal, 
correction of inconsistencies, and elimination of redundant and 
missing data. The experiment was carried out in a grain storage 
unit in the municipality of Morrinhos, Goiás, Brazil.

The experimental data used were obtained from the storage 
of sunflower grains, specifically from the beginning of storage, 
during the silo filling stage. In this period, the grains already 
stored were managed with the aeration strategy aimed at 
cooling, considering standards related to internal and external 
climatic conditions. Aeration fans were turned on when the 
external temperature was 4 ºC lower than the average internal 
temperature, i.e., the temperature of the mass of sunflower 
grains, as well as under conditions of no rainfall, and outside 
peak energy hours, between 5:30 and 8:00 p.m. 

The grains were stored in a vertical metal silo, 22 m wide, 
with 22 rings of 0.917 m, forming a body of 20.19 m in height 
and 26.44 m in total height. The silo body volume is 
7,674.87 m3, and the total volume is 8,466.81 m3. Considering 
the specific mass of sunflower grains of 0.39 ton m-3, the static 
capacity of the silo body is 2,993.20 tons of sunflower grains. 
The aeration system of the silos was composed of centrifugal 
fans with forward-curved blades driven by a three-phase motor 
with a power of 50 hp (36.77 kW) and which delivers an air 
flow (specific flow rate) of 0.05 m3 min-1 ton-1 of grain to the 
aeration system.

The internal temperature of the silo was monitored by a 
digital thermometry system, whose sensors were distributed 
inside the silo for each 66 m3 of grains. External climatological 
data were monitored by means of a weather station in the 
Storage Unit. The datasets were saved in intercalated periods 
of approximately 2 hours, or with each significant change in 
sensor readings. 

The database was composed of data referring to 37 days 
of storage, and thermometry data only from half of the silo 
were used during this period. As this is the silo filling period, 
it was not possible to use the data from all the sensors present 
in the silo during the data analysis period, so the data up to 
the seventh height of sensors (S07) were used; the sensors were 
vertically spaced at 1.5 m (Figure 1). During the period, the 
thermometry cable 03 (P03) was deactivated for maintenance, 
so the data from sensors on this cable were discarded.

Figure 1 shows the front view of the silo up to the seventh 
height of sensors (S07), which were used to compose the 
database, in addition to illustrating the distribution scheme 
of the thermometry cables and sensors throughout the silo, 
in a total of nine cables. The primary database was organized 
according to the height of sensors per period, i.e., the data of 
the same height of sensors were arranged in sequence from the 
beginning to the end of the data period, followed by the other 
heights in the same format.

The height of sensors is composed of one sensor from each 
thermometry cable (P01, P02, P04, P05, P06, P07, P08 and 

Figure 1. Organizational scheme of temperature data collected 
from a silo with digital thermometry system
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P09), and the average temperature for each height of sensors 
was calculated for the different moments. The primary database 
was composed of the temperature of each sensor per cable at 
the same height, average temperature of the height of sensors 
at the time, and overall average of the silo temperature at the 
time, considering the average of only the seven heights of 
sensors, besides considering the average of the external ambient 
temperature at the time and the condition of whether or not 
there was aeration in that period. When there was aeration, the 
data was coded 1, whereas 0 indicated the absence of aeration 
in the period evaluated. 

The secondary database was obtained from the primary 
database and included variables to indicate the efficiency of 
aeration; however, there are no standards in the literature 
for estimating efficiency, so some standards were tested in 
the present study in order to propose a model for predicting 
efficiency.

The first variable obtained was cooling during aeration. 
Cooling was considered when: there was aeration and the mean 
temperature of the height of sensors at the time was lower than 
or equal to the average temperature at the height of sensors in 
the period prior to the period analyzed. The heating during 
aeration variable was obtained by considering when there was 
aeration in the period, but no cooling, as well as when the 
average temperature of the height of sensors at the time was 
higher than 0.2 ºC compared to the average temperature at the 
height of sensors in the previous period.

Heating during aeration data were filtered, considering 
direct heating during aeration, which can occur when 
the external air is blown into the silo at an inappropriate 
temperature. To evaluate whether the heating of the grains is 
directly related to aeration, it was considered to be the case 
when there was heating during aeration and when the average 
temperature at the height of sensors at the time was higher than 
or equal to the external ambient temperature + 2 ºC. 

The model for evaluating the energy efficiency of aeration 
was estimated considering the periods in which there was 
aeration, and the indication of efficiency was obtained through 
the global analysis of the database, and for the process to be 
considered efficient the average temperature of the height of 
sensors at the time had to be lower than 2 ºC and above the 
previous average temperature of the same height of sensors. 
In addition, the average temperature of the silo at a given time 
must be lower than 1.5 ºC and above the previous average 
temperature, and the data must also not indicate that there 
was direct heating during aeration. 

For the variables cooling, heating during aeration and direct 
heating during aeration, the responses were coded; positive 
responses were coded with 1 and negative responses were 
coded with 0, whereas for efficiency the data were classified as 
efficient and non-efficient. The summary of the data analysis 
set is presented in Table 1.

Therefore, the complete database on which the tests were 
performed was obtained. The database was composed of eight 
columns and 3,808 rows, totaling 30,464 values. It should be 
highlighted that data in the rows were separated between the 
seven heights of sensors, thus increasing the variability of data 
throughout the silo.

For predictive modeling of the responses of efficiency of 
the aeration process, different supervised machine learning 
algorithms were fitted to the data obtained experimentally, 
later treated and organized in a file in the notepad tool. The 
classifier algorithms used were multilayer perceptron (MLP), 
support vector machine with polynomial kernel (SVM-Poly), 
support vector machine with radial kernel (SVM-Radial), and 
the decision tree algorithms J48 and random forest.

The predictive models were processed by the Weka 3.8.5 
tool, using cross-validation with 10 folds. The efficiency of the 
classifiers was evaluated based on the analysis of performance 
indicators and metrics. The indicators analyzed were the 
correct classification of the instances (CCI) (Eq. 1), incorrect 
classification of the instances (ICI) (Eq. 2), and the errors in 
the confusion matrix for efficiency (EF) and non-efficiency 
(NEF) of the aeration process.

Table 1. Summary of data processing to obtain responses 
during the aeration process

TavgSensors - Average temperature of the height of sensors, ºC; Tambient - External 
ambient temperature, ºC; and TavgSilo - Average silo temperature, ºC

Total of hitsCCI 100
Total of data in the set

= ×

Total of errorsICI 100
Total of data in the set

= ×

The metrics analyzed from the classifiers’ results were the 
Kappa coefficient, relative absolute error (RAE) (Eq. 3), root 
mean squared error (RMSE) (Eq. 4), and root relative squared 
error (RRSE) (Eq. 5).
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where:
pi - value of the i-th observation;
ai - predicted value for i-th observation;
a - mean of predicted values; and,
n - number of observations.

The partitioning clustering algorithm was used for 
unsupervised learning, and it was performed in Weka 3.8.5. 
using the K-means algorithm, which aims to partition n records 
into k clusters, where k < n. The data are separated into clusters, 
where centroids represent the center of the cluster, so the data 
are grouped into clusters according to the shortest distance of 
the centroid of the different clusters, following a distance metric 
(Corcovia & Alves, 2019), which is the Euclidean distance for 
the K-means algorithm (Oliveira et al., 2022).

According to Corcovia & Alvez (2019), the application of 
the K-means algorithm requires determining which number 
of clusters will be generated by the algorithm; for these two 
clusters were standardized in the estimation of the separation 
of the data on the status of the energy efficiency of aeration into 
efficient and non-efficient. The results were evaluated based 
on the values of the incorrect classification of the instances, 
as well as on the assessment of the errors of the clusters as a 
function of the observed data of aeration, cooling, heating 
and direct heating.

This study involved the use of the Cross Industry Standard 
Process for Data Mining (CRISP-DM) methodology for 
project management and development of a Web application, 
as illustrated in Figure 2, which was able to predict whether 
the aeration of the silo was efficient or non-efficient. 

The dataset obtained was in .xls format, consisting of 3,808 
rows and eight variables, totaling 34,272 data. The dataset was 
converted to comma-separated-values and then subjected to 
exploratory data analysis, which corresponds to summarizing, 
organizing, and interpreting the collected data. The following 
are the variables of the initial dataset and their descriptions:

TempSensors: temperature of the sensors inside the silo;
TempSILO: temperature inside the silo;
TempAMB: ambient temperature at the time of the 

experiment;

Aeration: determines whether or not there has been 
aeration;

Cooling Aeration: determines whether or not there has 
been cooling;

Heating Aeration: determines whether or not there has 
been heating;

Direct Heating Aeration: determines whether or not there 
has been direct heating at the time of aeration;

Aeration Efficiency: Determines whether or not aeration 
was efficient.

In the data pre-processing stage, outliers and missing data 
were identified and excluded. A column named efficiency, of 
the aeration system, which is the target variable of the machine 
learning model, was also created to determine whether the 
aeration was efficient or non-efficient. 

After mining the data for the aeration system for sunflower 
grains, it was possible to conclude that the dataset was 
composed of 84.56% corresponding to 3220 aeration non-
efficient data and 15.44% corresponding to 588 aeration 
efficient data, according to the data pre-processing step, for 
prediction of the efficiency of the aeration system for sunflower 
grains. 

The statistical analysis of the dataset was performed to 
obtain the following information: mean (mean), standard 
deviation (std), minimum (min), quartiles (1st, 2nd, 3rd) and 
maximum (max) for each column. Subsequently, Pearson’s (r) 
correlation was performed.

For data modeling, the following technologies were used: 
GitHub tool to control project version, Phyton programming 
language to develop the machine learning model and the 
aeration system API. The following libraries for Python 
programming language were also used: pandas, pandas-
profiling, seaborn, matplotlib, numPy, scikit-learn, PyCaret 
and Streamlit. 

SQlite3 was chosen as the database, and Anaconda was 
chosen as the package manager. Jupyter Notebook tool was 
used as an environment for development, training, testing, 
and evaluation of the results of the machine learning model. 
The integrated development environment (IDE) Visual Studio 
Code was used.

For the training of the dataset, the following features 
were defined: sensor temperature, silo temperature, ambient 
temperature, aeration, cooling aeration, heating aeration, 
direct heating aeration and the target variable. The training 
set was defined as the data presented to the machine learning 
algorithm to create the model with 70% of the data. The test 
set was presented to the model after its creation, simulating 
real predictions that the model made, thus allowing the actual 
performance to be assessed, i.e., 30% of the data. 

The classification module used was that of PyCaret, 
a supervised machine learning module that classifies 
elements into groups, capable of predicting categorical class 
labels (discrete and unordered), with graphs to assess the 
performance of the trained models. A total of 15 algorithms 
were compared with 10-fold cross-validation.

The metrics used were: accuracy indicated the performance 
of the model; area under the curve (AUC) provided the 
performance measure of the classification limits; recall Figure 2. Simplified representation of the project
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measured the number of disapproved comments that the 
system approved; Precision indicated the classifications with 
positive class, i.e., how many are correct; F1 score indicated 
the calculated harmonic mean based on precision and recall; 
Kappa measured reliability between evaluators; and Matthews 
correlation coefficient (MCC) measured the quality of binary 
classifiers. 

Results and Discussion

Table 2 shows that 15.44% (588) of the information that 
made up the database went through the aeration process, 
of which 60.54% (356) of the data indicated cooling. It was 
estimated that 6.46% (38) of the aeration process caused 
heating of the grains, and of these approximately 29% (11) of 
the heating data indicate direct heating due to the aeration 
process. 

Considering the data of efficient aeration over the total 
aeration processes, the model tested in this study indicated 
an energy efficiency level of 97.79% (575) for the aerations 
performed during the analyzed period, which is a good 
efficiency level since inefficient aeration can represent 
unnecessary costs for the storage unit, in addition to 
compromising the quality of the grains.

It should be noted that the evaluation of aeration energy 
efficiency was carried out by silo height, so the aeration 
inefficiency cannot be generalized for the entire silo. Among 
the heights of sensors analyzed, only thermometry cable S05 
did not have any energy inefficiency of aeration during the 
study period (Figure 3A).

For the S05 height, it is possible to notice that during 
the aeration moment shown there was a decrease in the 
temperature of the grains at the height of the sensor, as well 
as in the total grain mass of the silo. The temperature of the 
grains at the height of this sensor changed from 17.68 to 14.64 
ºC and the average temperature of the grain mass in the entire 
silo changed from 16.08 to 14.47 ºC; under this condition, the 
aeration air at ambient temperature had an average temperature 
of 9.75 ºC.

In Figure 3B it is possible to observe a moment in which 
the aeration showed energy inefficiency, according to the 
efficiency model tested, with pronounced reduction in the 
average temperature of the grains in the entire silo, from 17.20 
to 16.97 ºC. However, for grains located at the height of this 
sensor, there was an increase in temperature, from 13.81 to 
16.76 ºC, representing a 21.36% increment. 

When analyzing a grain aeration simulation process 
without the control system, Sá et al. (2022) found that when the 
grain is exposed to temperatures higher than its temperature 
under continuous conditions, the heating process occurs, as the 
energy balance is positive. In other words, in the case of Figure 

3B, the aeration was efficient to reduce grain mass temperature 
in the silo, but this did not occur at all monitored points. 

The inefficiency in this case occurred due to the increase in 
this temperature, as it represented an energy expenditure for 
the storage unit, since energy was spent for cooling the grain 
in the first instance, which involuntarily resulted in heating 
of the grain mass. However, two important points must be 
remembered. The first one is that aeration is carried out to cool 
the grain mass of the silo, that is, it can be performed to reduce 
heat concentration at specific points, such as heat pockets, so 
heating situations are normal from a practical point of view. 

Another situation is related to the practical efficiency of 
aeration. Beyond the energy point of view, in the situation of 
heating of the S04 height (Figure 3B), although the temperature 
was high, it was within a safe range for grain storage, up to 25 
ºC, because above this value the storage time is reduced and the 
grain is subject to changes in moisture content, thousand grain 
mass, electrical conductivity, fatty acid profile etc. (Paraginki 
et al., 2015). 

Therefore, in the cases raised during the experimentation of 
this aeration efficiency prediction model, only the evaluation 
of the process efficiency from the energy point of view was 

Table 2. Result of database treatment

A.

B.

Figure 3. Behavior of grain mass and ambient temperatures 
for the S05 (A) and S04 (B) heights during an aeration process 
of stored sunflower grains
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considered, suggesting that future studies can be conducted to 
test aeration efficiency models in order to address issues such 
as the safe temperature for grain storage.

Table 3 presents the performance indicators of the algorithms 
tested in supervised machine learning to classify the aeration 
status of stored sunflower grains. In relation to the MLP classifier, 
it had 99.9212% of correct answers in the classification of the 
status of the aeration process tested, and there was an incorrect 
classification: the classifier made a mistake 1 time classifying 
the process as efficient and 2 times classifying it as non-efficient. 
Of the total of 588 moments in which the aeration process was 
efficient, SVM-Poly obtained 100% accuracy, but this classifier 
made two mistakes when evaluating the status of non-efficiency 
of the aeration as efficient.

Among the classifiers tested, the SVM-Radial had the lowest 
results for CCI and the highest for ICI, indicating that this 
algorithm was the one that made the most errors during the 
classification of the aeration status. The error of this classifier 
occurred for the evaluation of the non-efficiency of aeration; 
in 12 moments of the analyzed period, the classifier predicted 
the process as efficient.

When comparing the decision tree algorithms, J48 and 
Random Forest, the J48 algorithm stood out with higher values 
for CCI and lower values for ICI and errors in the confusion 
matrix. Figure 4 shows the two errors from the algorithm’s 
decision tree, and it is possible to notice that there were 588 
evaluations of the aeration process as efficient.

The J48 classifier was efficient to identify situations of 
inefficiency for aeration when there was direct heating of 

the grains due to aeration, in 10 situations. In the classifier’s 
decision tree, the two incorrect classifications occurred at times 
when there was no aeration. 

Regarding the indicators (Table 3), the algorithms SVM-
Poly, J48 and Random Forest showed the same values for CCI, 
ICI and errors in the confusion matrix. Figure 5 shows the 
errors predicted by the SVM-Poly algorithm as a function of 
the status of the aeration process and the incidence of direct 
heating during aeration.

It can be observed in Figure 5A that the erroneous 
classification occurred for the non-efficiency status, in which 
the classifier separated it as efficient. Figure 5B shows that the 

0 indicates no, and 1 indicates yes

Figure 4. J48 algorithm’s decision tree for the aeration process of stored sunflower grains

SVM-Poly - Support vector machine with polynomial kernel; SVM - Radial: support 
vector machine with radial kernel; and J48 - Decision trees

Table 3. Indicators of the performance of the classifier 
algorithms, with correct classification of the instances (CCI), 
incorrect classification of the instances (ICI), and the errors 
in the confusion matrix for efficiency (EF) and non-efficiency 
(NEF) of the aeration process

Figure 5. Incorrect classifications of the instances by the SVM-
Poly algorithm as a function of aeration efficiency (A) and as a 
function of direct heating of the grain mass during aeration (B)

B.

A.
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classification as a function of direct heating was performed 
correctly, with the 10 moments of aeration being non-efficient 
due to direct heating during aeration, This result is similar 
to that observed in the classification of the J48 algorithm 
(Figure 4). Given these similar results generated by the 
different classifiers, the proposed model for evaluating aeration 
efficiency has applicability of use in predictive analyses of the 
process, since at least two algorithms were able to estimate 
the process correctly. Table 4 presents metrics to evaluate the 
performance of the algorithms tested to classify the status of 
the aeration process of the mass of stored sunflower grains.

The Kappa coefficient was higher for the SVM-Poly and J48 
algorithms, both of which had the same magnitude (0.9980), 
except for the SVM-Radial classifier, which showed a lower 
value for the coefficient (0.9878). The other algorithms showed 
Kappa coefficients higher than 0.9969. According to Kotz & 
Johnson (1983), this coefficient is used to describe and test the 
reliability and precision of the classification. For Landis & Koch 
(1977), Kappa coefficients greater than 0.75 are characterized as 
excellent agreement, so all the algorithms tested in the present 
study showed classification in agreement.

The highest value of relative absolute error was shown by 
the SVM-Radial algorithm, which also had higher values for 
RMSE and RRSE. Regarding RAE, values close to zero indicate 
an ideal classification scenario (Charles, 2017), so the SVM-
Poly classifier stood out, followed by J48. For the RMSE and 
RRSE parameters, the SVM-Poly classifier showed the lowest 
values, indicating a shorter distance between the classified data 
and the experimentally observed data (Kuhn & Jhonson, 2013).

According to the metrics analyzed, the SVM-Poly algorithm 
stands out in the classification of aeration status in supervised 
machine learning compared to the other classifiers tested in 
the present study, and this model is therefore recommended 
for implementation in neural networks to predict the aeration 
status of stored grains.

In the results of the clustering, the similarities of the data 
were found by means of the Euclidean distance and thus 
defined by the unsupervised machine learning, that is, the 
clusters were defined according to the variable of aeration 
efficiency: efficient and non-efficient from two clusters. Figure 
6 represents the clusters grouped by the K-means algorithm, 
and it is possible to see the clusters performed as a function 
of the observed data of the aeration efficiency status estimated 
in the present study.

The efficient aeration statuses were grouped in cluster 0; 
however, 12 situations in which aeration was non-efficient 

were erroneously grouped in this cluster, as observed for 
cluster 1, in which 26 moments in which aeration was efficient 
were categorized in the non-efficient aeration cluster (Figure 
6). Overall, there were 38 instances incorrectly clustered, 
approximately 1% of the data; cluster 0 was composed of 562 
data (15%), and cluster 1 was composed of 3,246 data (85%). 

Figure 7 details the grouping of the clusters, and it is 
possible to observe where the clustering estimation errors 
occurred for the aeration, cooling, heating and indirect heating 
situations.

Cluster 0 representing the efficiency of aeration was colored 
blue, and for this cluster there were situations in which when 
there was aeration, it was observed as non-efficient, but 
learning categorized it in cluster 0 (Figure 7A). As well as for 
non-efficiency, most of the data on aeration inefficiency are 
due to the fact that aeration did not occur at the evaluated 
moments, demonstrating that unsupervised machine learning 
was able to identify such a situation.

However, it can be seen that, in 26 moments when aeration 
was efficient, these data were grouped in cluster 1, which 
received a red color and was the cluster of non-efficiency of 
aeration. This may have occurred due to the wide variety of 
temperature data used in the tested database, as the algorithm 
may have identified some pattern between these values and 
the others in the same cluster, since K-means uses Euclidean 
distance as a metric to find the similarities of the clusters 
(Oliveira et al., 2022).

For the situations in which aeration promoted cooling 
(Figure 7B), the learning correctly clustered the data, except 
for the 26 data already listed previously in cluster 1, in which 
these were shown to be efficient in practice, but were judged 
as inefficient in learning. In this case the most plausible 
justification is that the K-means has not learned from the tests, 
so regardless of whether or not there was cooling, aeration can 
be efficient (Table 1).

Considering the behavior of clustering for the heating 
situations (Figure 7C), there is similarity with the results 
observed for cooling, since for conditions in which heating was 
not observed, the aeration can be efficient if it has occurred and 
non-efficient for the opposite case. Therefore, it can be seen that 
the 26 failures of unsupervised learning are due to these two 
rules (cooling and heating), which the system failed to learn. It 

SVM-Poly - Support vector machine with polynomial kernel; SVM - Radial: support 
vector machine with radial kernel; and J48 - Decision trees

Table 4. Metrics for evaluating the performance of the classifier 
algorithms, based on Kappa coefficient, relative absolute error 
(RAE), root mean squared error (RMSE) and root relative 
squared error (RRSE)

Figure 6. Result of clustering in unsupervised machine 
learning as a function of aeration status
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Figure 7. Representation of unsupervised machine learning clusters as a function of aeration efficiency with: aeration process 
(A); cooling of the grain mass (B); heating of the grain mass (C); direct heating to aeration (D)

A. B.

C. D.

was also observed that there were 12 situations in which there 
was heating and, although the aeration was non-efficient, the 
data were grouped in cluster 0, that is, the system could not 
connect the two situations of heating and non-efficiency.

Figure 7D shows the same behavior in the representation of 
the direct heating situation, in which the system was unable to 
learn from the tested data, since for the 10 moments in which 
there was direct heating due to aeration and, therefore, the 
aeration was non-efficient, the data were grouped in cluster 0. 

With these results, it is possible to notice that despite 
having a high level of accuracy, 99%, the unsupervised machine 
learning showed some limitations in the estimation of decisive 
rules of the aeration status evaluation process, and supervised 
machine learning was able to estimate these rules through 
the J48 and SVM-Poly algorithms. The estimation errors by 
unsupervised learning may have occurred due to the high 
variety of data present in the database, more precisely due to 
the low concentration of indirect heating data, these being 
the only data in this situation that the system could not learn. 

Therefore, according to what was observed and tested in 
the present study, the use of K-means in unsupervised machine 
learning is not recommended for the management of aeration 
efficiency evaluation processes. New tests with a more balanced 
database can be run to test the estimation of unsupervised 
learning with K-means. This algorithm is considered to be 
traditional unsupervised machine learning (Oliveira et al., 2022).

The metrics used to evaluate the supervised machine 
learning indicate that the Naive-Bayes classifier achieved the 
following means of the metrics: accuracy of 99.95, AUC of 
99.98, recall of 99.94, precision of 100%, F1 score of 99.97, 
Kappa of 99.82 and MCC of 99.82%. 

As the result of the data mining, the statistical analysis of the 
data was obtained through the Pearson matrix. In turn, Pearson’s 
correlation matrix (r) signals through the intensity of the colors the 
correlation between the variables, that is, when the intensity of the 
color is dark or close to 1, the variables have a higher correlation, 
while the opposite indicates a lower correlation (Figure 8). 

In this context, through Pearson’s correlation matrix it was 
possible to conclude that the variables sensor temperature 
and silo temperature, aeration and cooling aeration, and 
finally heating aeration and direct heating aeration are 
highly correlated. On the other hand, the variables ambient 
temperature and silo temperature, as well as sensor temperature, 
have a low correlation, as well as cooling aeration and ambient 
temperature and silo temperature with low correlation. 

After the statistical analysis was completed, the supervised 
machine learning and the Web site were implemented using 
the Rest API with the Streamlit library to make the supervised 
machine learning model available run in real time (Figure 9).

The Web site was made available in real time to the producer 
and/or the storage unit, who were required to enter the data 
of sensor temperature, silo temperature, ambient temperature, 
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energy efficiency was 97.78% during the aeration of stored 
sunflower grains.

2. The recommended models, J48 and SVM-Poly, for 
evaluating aeration efficiency have applicability of use in 
predictive analysis of the process.

3. Among the classifier algorithms tested in supervised 
machine learning, SVM-Poly showed the best metrics and 
indicators, being recommended for predicting the aeration 
status of stored grains.

4. Unsupervised machine learning with the K-means 
algorithm was not recommended for aeration efficiency 
evaluation with the tested database.

5. From data mining and modeling with machine learning, it 
was possible to develop the Web tool, registered under number 
BR512022000174-8, capable of predicting aeration efficiency.
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